

Solar City Indicator: A methodology and ranking of the potential for PV in UK cities

Energy Research Institute Doctoral Training Centre in Low Carbon Technologies

Holly Edwards, Jannik Giesekam, James Gooding, Philippa Hardy and Rolf Crook

Presentation at PVSAT-8, Northumbria University, 03/04/2012

Introduction

- Aims & Rationale
- The Solar City Indicator
- Physical Capabilities
- Socio-economic Considerations
- Solar City Indicator Results
- Scenario Results
- Conclusion

Aims and Rationale

- To create a Solar City Indicator, which will demonstrate the potential for solar PV installation within a city, taking into account:
 - Physical capability
 - Socio-economic influences
- To compare the outcome across a selection of geographically distributed cities
- To assess the impacts of changes to
 - FiT
 - Cost of Panels
 - Cost of Electricity
 - Payback
 - Changes to socio-economic factors

Analysis undertaken to calculate the Solar City Indicator included the following:

- Physical Analysis
 - Annual solar irradiance at each building in a city
 - Latitude
 - Orientation
 - Slope of roof
 - Topological and surrounding building shading effects
 - Weather effects
- Socio-economic Analysis
 - Ability to install solar PV
 - Tenure
 - Housing stock (and income for new FiT rates)
 - Desire to install solar PV
 - Education
 - Environmental consciousness

Recent Growth in Solar PV

Growth in solar PV under FiTS since June 2011

- 242,000 new installations since start of June 2011
- 870 MW of additional capacity (now past 1GW total)

Assessing Physical Capability

new points. Double-	click to stop draw	ing.
C	raw	
If you make a mistak button at the top of f	te, click the Clear I the map to start ov	Map ver.
Step 2. Adjust th	e inputs.	
Step 2. Adjust th Based on the size ar system IMBY sugges change these values in the fields below. E	e inputs. Ind location of your its these inputs. T s, enter your infor ielp	o mation
Step 2. Adjust th Based on the size ar system IMBY sugges change these values in the fields below. <u>b</u> Size (kW):	e inputs. Ind location of your Its these inputs. T s, enter your infor telp 8.01	o mation
Step 2. Adjust th Based on the size ar system IMBY sugges change these values in the fields below. <u>}</u> Size (kW): Derating:	e inputs. ad location of your its these inputs. T s, enter your infor telp 8.01 0.77	o mation
Step 2. Adjust th Based on the size ar system IMBY sugges change these values in the fields below. <u>E</u> Size (kW): Derating: Tilt angle (°):	e inputs. Ind location of your its these inputs. T s, enter your infor telp 8.01 0.77 41	o mation
Step 2. Adjust th Based on the size ar system IMBY sugges change these values in the fields below. <u>F</u> Size (kW): Derating: Tilt angle (°): Azimuth angle (°):	e inputs. d location of your ts these inputs. T s, enter your infor telp 8.01 0.77 41 180	o mation

Run

IMBY http://www.nrel.gov/eis/imby/

SEES http://www.gvc.gu.se/Forskning/klimat/stadsklimat/gucg/software/sees/

SUN-AREA http://www.sun-area.net/

P. Asinari and L. Bergamasco (Turin 2011)

Methodology

Methodology

Small Properties

Physical Results

Viable Output Under Baseline Scenario

Socio-economic Factors

1. Desire Factors

Education - % of adult population with a minimum qualification of level 4/5

Environmental Consciousness - % household waste recycled

2. Ability Factors

Tenure - % of households owned

Housing Stock - % houses/bungalows

Income - average income employed/retired population (Depending on FiT Level)

Socio-economic Factors

Socio-economic Factor Under Baseline Scenario

Socio-economic Scenarios

Socio-economic Factor Under Range Of Scenarios

Overall Results

Solar City Indicator

Series of scenarios considered changes in:

• FiT Rates

Scenarios

- Electricity Prices
- Acceptable Payback Period
- Price of Panels

Solar Radiation Results Analysis	×
Select city for analysis	
Nottingham 🔽	
Select tariff for analysis	
Feed In Tariff *b* from 12/12/11 (p/kWh)	
Select cost of panels for analysis	
10% reduction in cost of panels (£)	
Select electricity prices for analysis	
BT standard electricity tariff (p/kWh)	
Select payback period for analysis	
20 yrs	
Analyse Cancel	

% of Electricity Demand Met When Panel Costs Fall

A 40% decrease in the cost of panels would result in a 136% increase in total viable output and would make 73% of large properties viable (baseline = 14.3%)

% of Electricity Demand Met When FiTs Change

25 % of electricity demand met

• New UK tariffs result in a 98% reduction in total viable output and leave less than 1% of large properties viable

Further Work

- Physical Capability
 - Improvements for small property estimations
 - More accurate representation of unusual roofs
 - Automated 'cleaning' process for building polygons
 - Ultimately limited by data availability and low resolution of LiDAR data
- Socio-economic Influences
 - Underpin factor choice with more qualitative research into what determines uptake levels.
 - Design a methodology that more effectively incorporates uptake among businesses into account.

- A method for assessing a city's potential to install solar PV has been demonstrated
- A North/South divide is not as clear as might be preconceived
- Socio-economic factors have a strong influence on likely uptake
- Viability is highly dependent on price of panels, which are expected to keep falling
- New FiT will have a significant impact on a growing PV industry

Thank you

Contact: Holly Edwards pmhae@leeds.ac.uk